DATA SHEET

74LVC109

Dual JK flip-flop with set and reset; positive-edge trigger

Dual $J \overline{\mathrm{~K}}$ flip-flop with set and reset; positive-edge trigger

74LVC109

FEATURES

- 5 V tolerant inputs for interfacing with 5 V logic
- Wide supply voltage range from 1.2 to 3.6 V
- CMOS low power consumption
- Direct interface with TTL levels
- Inputs accept voltages up to 5.5 V
- Complies with JEDEC standard no. 8-1A
- ESD protection:

HBM EIA/JESD22-A114-A exceeds 2000 V MM EIA/JESD22-A115-A exceeds 200 V.

- Specified from -40 to $+85^{\circ} \mathrm{C}$ and -40 to $+125^{\circ} \mathrm{C}$.

DESCRIPTION

The 74LVC109A is a high-performance, low-voltage, Si-gate CMOS device, superior to most advanced CMOS compatible TTL families.

The 74LVC109A is a dual positive edge triggered JK flip-flop featuring individual J and $\overline{\mathrm{K}}$ inputs, clock (CP) inputs, set ($\overline{\mathrm{S}} \mathrm{D}$) and reset ($\overline{\mathrm{R} D}$) inputs and complementary Q and \bar{Q} outputs.

The set and reset are asynchronous active LOW inputs and operate independently of the clock input.

The J and $\overline{\mathrm{K}}$ inputs control the state changes of the flip-flops as described in the mode select function table. The J and \bar{K} inputs must be stable one set-up time prior to the LOW-to-HIGH clock transition for predictable operation. The \sqrt{K} design allows operation as a D-type flip-flop by tying the J and $\overline{\mathrm{K}}$ inputs together.

Schmitt-trigger action in the clock input makes the circuit highly tolerant to slower clock rise and fall times.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay nCP to nQ and nCP to $\mathrm{n} \overline{\mathrm{Q}}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	3.8	ns
	propagation delay $n \bar{S} D$ to $n Q$ and $n \bar{R} D$ to $n \bar{Q}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	3.2	ns
	propagation delay $n \bar{S} D$ to $n \bar{Q}$ and $n \bar{R} D$ to $n Q$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	3.5	ns
$\mathrm{f}_{\text {max }}$	maximum clock frequency	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	330	MHz
C_{1}	input capacitance		5.0	pF
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance per flip-flop	notes 1 and 2	23	pF

Notes

1. $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\left.\mu \mathrm{W}\right)$.
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in Volts;
$\mathrm{N}=$ total load switching outputs;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of the outputs.
2. The condition is $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}.

Dual $\mathrm{J} \overline{\mathrm{K}}$ flip-flop with set and reset; positive-edge trigger

FUNCTION TABLE

See note 1.

OPERATING MODES		INPUT					OUTPUT	
		$\mathbf{n} \overline{\mathbf{R} \mathbf{D}}$	$\mathbf{n C P}$	$\mathbf{n J}$	$\mathbf{n \overline { K }}$	$\mathbf{n Q}$	$\mathbf{n \overline { Q }}$	
Asynchronous set	L	H	X	X	X	H	L	
Asynchronous reset	H	L	X	X	X	L	H	
Undetermined	L	L	X	X	X	H	H	
Toggle	H	H	\uparrow	h	l	$\overline{\mathrm{q}}$	q	
Load 0 (reset)	H	H	\uparrow	I	I	L	H	
Load 1 (set)	H	H	\uparrow	h	h	H	L	
Hold no change	H	H	\uparrow	l	h	q	$\overline{\mathrm{q}}$	

Note

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level;
$h=$ HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition;
L = LOW voltage level;
I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition;
$\mathrm{q}=$ lower case letters indicate the state of the referenced output one set-up time prior to the LOW-to-HIGH CP transition;
X = don't care;
$\uparrow=$ LOW-to-HIGH CP transition.

ORDERING INFORMATION

TYPE NUMBER	PACKAGE				
	TEMPERATURE RANGE	PINS	PACKAGE	MATERIAL	CODE
	-40 to $+125^{\circ} \mathrm{C}$	16	SO16	plastic	SOT109-1
74LVC109DB	-40 to $+125^{\circ} \mathrm{C}$	16	SSOP16	plastic	SOT338-1
74LVC109PW	-40 to $+125^{\circ} \mathrm{C}$	16	TSSOP16	plastic	SOT403-1

Dual \sqrt{K} flip-flop with set and reset; positive-edge trigger

PINNING

PIN	SYMBOL	
1	$1 \bar{R} D$	asynchronous reset input (active LOW)
2	1 J	synchronous input
3	$1 \overline{\mathrm{~K}}$	synchronous input
4	1 CP	clock input (LOW-to-HIGH; edge-triggered)
5	$1 \overline{\mathrm{SD}}$	asynchronous set input (active LOW)
6	1 Q	true flip-flop output
7	$1 \overline{\mathrm{Q}}$	complement flip-flop output
8	GND	ground (0 V)
9	$2 \bar{Q}$	complement flip-flop output
10	2 Q	true flip-flop output
11	$2 \overline{\mathrm{SD}}$	asynchronous set input (active LOW)
12	2 CP	clock input (LOW-to-HIGH; edge-triggered)
13	$2 \overline{\mathrm{~K}}$	synchronous input
14	2 J	synchronous input
15	$2 \bar{R} D$	asynchronous reset input (active LOW)
16	$\mathrm{~V}_{\text {CC }}$	supply voltage

Fig. 1 Pin configuration SO16 and (T)SSOP16.

Fig. 2 Logic symbol.

Dual JK flip-flop with set and reset; positive-edge trigger

Dual JK flip-flop with set and reset; positive-edge trigger

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage	for maximum speed performance	2.7	3.6	V
		for low-voltage applications	1.2	3.6	V
	input voltage		0	5.5	V
$\mathrm{~V}_{\mathrm{O}}$	output voltage		0	$\mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\mathrm{amb}}$	ambient temperature	in free air	-40	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	input rise and fall times	$\mathrm{V}_{\mathrm{CC}}=1.2$ to 2.7 V	0	20	$\mathrm{~ns} / \mathrm{V}$
		$\mathrm{V}_{\mathrm{CC}}=2.7$ to 3.6 V	0	10	$\mathrm{~ns} / \mathrm{V}$

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage		-0.5	+6.5	V
I_{IK}	input diode current	$\mathrm{V}_{\mathrm{I}}<0$	-	-50	mA
$\mathrm{~V}_{\mathrm{I}}$	input voltage	note 1	-0.5	+6.5	V
I_{OK}	output diode current	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{O}}<0$	-	± 50	mA
$\mathrm{~V}_{\mathrm{O}}$	output voltage	note 1	-0.5	$\mathrm{~V}_{\mathrm{CC}}+0.5$	V
I_{O}	output source or sink current	$\mathrm{V}_{\mathrm{O}}=0$ to V_{CC}	-	± 50	mA
$\mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{GND}}$	$\mathrm{V}_{\text {CC }}$ or GND current		-	± 100	mA
$\mathrm{~T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	power dissipation	$\mathrm{T}_{\text {amb }}=-40$ to $+125^{\circ} \mathrm{C}$; note 2	-	500	mW

Notes

1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. For SO16 packages: above $70^{\circ} \mathrm{C}$ the value of $P_{\text {tot }}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$.

For (T)SSOP16 packages: above $60^{\circ} \mathrm{C}$ the value of $P_{\text {tot }}$ derates linearly with $5.5 \mathrm{~mW} / \mathrm{K}$.

Dual \sqrt{K} flip-flop with set and reset; positive-edge trigger

DC CHARACTERISTICS

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT	
		OTHER	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$					
$\mathrm{T}_{\text {amb }}=\mathbf{- 4 0}$ to $85{ }^{\circ} \mathrm{C}$; note 1								
V_{IH}	HIGH-level input voltage		1.2	V_{CC}	-	-	V	
			2.7 to 3.6	2.0	-	-	V	
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage		1.2	-	-	GND	V	
			2.7 to 3.6	-	-	0.8	V	
V_{OH}	HIGH-level output voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.7 \text { to } 3.6 \\ & 2.7 \\ & 3.0 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & V_{C C}-0.2 \\ & V_{C C}-0.5 \\ & V_{C C}-0.6 \\ & V_{C C}-0.8 \\ & \hline \end{aligned}$	V_{CC} - \|-	-	$\left(\begin{array}{l} - \\ - \\ - \\ - \end{array}\right.$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OL}	LOW-level output voltage	$\begin{aligned} \mathrm{V}_{\mathrm{I}} & =\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}} & =100 \mu \mathrm{~A} \\ \mathrm{l}_{\mathrm{O}} & =12 \mathrm{~mA} \\ \mathrm{l}_{\mathrm{O}} & =24 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2.7 \text { to } 3.6 \\ & 2.7 \\ & 3.0 \\ & \hline \end{aligned}$	$\left[\begin{array}{l} - \\ - \\ - \end{array}\right.$	GND	$\begin{array}{\|l\|} \hline 0.2 \\ 0.4 \\ 0.55 \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	
ILI	input leakage current	$\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND	3.6	-	± 0.1	± 5	$\mu \mathrm{A}$	
I_{CC}	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND; } \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \end{aligned}$	3.6	-	0.1	10	$\mu \mathrm{A}$	
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional quiescent supply current per input pin	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \end{aligned}$	2.7 to 3.6	-	5	500	$\mu \mathrm{A}$	

Dual \sqrt{K} flip-flop with set and reset; positive-edge trigger

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
		OTHER	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40$ to $125^{\circ} \mathrm{C}$							
V_{IH}	HIGH-level input voltage		1.2	V_{CC}	-	-	V
			2.7 to 3.6	2.0	-	-	V
V_{IL}	LOW-level input voltage		1.2	-	-	GND	V
			2.7 to 3.6	-	-	0.8	V
V_{OH}	HIGH-level output voltage	$\begin{gathered} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA} \end{gathered}$	$\begin{array}{\|l\|} 2.7 \text { to } 3.6 \\ 2.7 \\ 3.0 \\ 3.0 \\ \hline \end{array}$	$\begin{aligned} & V_{C C}-0.3 \\ & V_{C C}-0.65 \\ & V_{C C}-0.75 \\ & V_{C C}-1.0 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OL}	LOW-level output voltage	$\begin{array}{r} \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A} \\ \mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA} \\ \mathrm{l}_{\mathrm{O}}=24 \mathrm{~mA} \end{array}$	$\begin{array}{\|l} 2.7 \text { to } 3.6 \\ 2.7 \\ 3.0 \\ \hline \end{array}$			$\begin{array}{\|l} \hline 0.3 \\ 0.6 \\ 0.8 \\ \hline \end{array}$	$\begin{array}{\|l} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~V} \end{array}$
I_{LI}	input leakage current	$\mathrm{V}_{1}=5.5 \mathrm{~V}$ or GND	3.6	-	-	± 20	$\mu \mathrm{A}$
I_{CC}	quiescent supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \end{aligned}$	3.6	-	-	40	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional quiescent supply current per input pin	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} \end{aligned}$	2.7 to 3.6	-	-	5000	$\mu \mathrm{A}$

Note

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

Dual \sqrt{K} flip-flop with set and reset; positive-edge trigger

AC CHARACTERISTICS

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$.

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
		WAVEFORMS	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40$ to $85{ }^{\circ} \mathrm{C}$; note 1							
$\mathrm{t}_{\text {PHL }} / t_{\text {PLH }}$	propagation delay $n C P$ to $n Q$ and $n C P$ to $n \bar{Q}$	see Figs 6 and 8	1.2	-	15	-	ns
			2.7	1.5	2.8	7.3	ns
			3.0 to 3.6	1.0	$3.8^{(2)}$	6.8	ns
$\mathrm{t}_{\text {PLH }}$	propagation delay $n \bar{S} D$ to $n Q$ and $n \bar{R} D$ to $n \bar{Q}$	see Figs 7 and 8	1.2	-	16	-	ns
			2.7	1.5	4.0	8.2	ns
			3.0 to 3.6	1.0	$3.2^{(2)}$	7.0	ns
$\mathrm{t}_{\text {PHL }}$	propagation delay $n \bar{S} D$ to $n \bar{Q}$ and $n \bar{R} D$ to $n Q$	see Figs 7 and 8	1.2	-	13	-	ns
			2.7	1.5	4.7	7.1	ns
			3.0 to 3.6	1.0	$3.5{ }^{(2)}$	6.5	ns
tw	clock pulse width HIGH or LOW	see Fig. 6	3.0 to 3.6	3.3	2.0	-	ns
	set or reset pulse width HIGH or LOW	see Fig. 7	3.0 to 3.6	3.0	-	-	ns
$\mathrm{t}_{\text {rem }}$	removal time n $\overline{S D}$, n $\mathrm{R} D$ to nCP	see Fig. 7	3.0 to 3.6	3.0	-	-	ns
t_{su}	set-up time nJ and nK to CP	see Fig. 6	3.0 to 3.6	2.5	-	-	ns
$\mathrm{th}^{\text {r }}$	hold time nJ and $\mathrm{n} \overline{\mathrm{K}}$ to nCP	see Fig. 6	3.0 to 3.6	2.0	-	-	ns
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency	see Fig. 6	3.0 to 3.6	150	330	-	MHz
$\mathrm{t}_{\text {sk(0) }}$	skew	note 3	3.0 to 3.6	-	-	1.0	ns

Dual JK flip-flop with set and reset; positive-edge trigger

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
		WAVEFORMS	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40$ to $125{ }^{\circ} \mathrm{C}$							
$\mathrm{t}_{\text {PHL }} / \mathrm{t}_{\text {PLH }}$	propagation delay nCP to nQ and nCP to $\mathrm{n} \overline{\mathrm{Q}}$	see Figs 6 and 8	2.7	1.5	-	9.5	ns
			3.0 to 3.6	1.0	-	8.5	ns
$\mathrm{t}_{\text {PLH }}$	propagation delay $n \bar{S} D$ to $n Q$ and $n \bar{R} D$ to $n \bar{Q}$	see Figs 7 and 8	2.7	1.5	-	10.5	ns
			3.0 to 3.6	1.0	-	9.0	ns
$\mathrm{t}_{\text {PHL }}$	propagation delay $n \bar{S} D$ to $n \bar{Q}$ and $n \bar{R} D$ to $n Q$	see Figs 7 and 8	2.7	1.5	-	9.0	ns
			3.0 to 3.6	1.0	-	8.5	ns
t_{w}	clock pulse width HIGH or LOW	see Fig. 6	3.0 to 3.6	3.3	-	-	ns
	set or reset pulse width HIGH or LOW	see Fig. 7	3.0 to 3.6	3.0	-	-	ns
$\mathrm{t}_{\text {rem }}$	removal time n $\bar{S} D$, n $\bar{R} D$ to $n C P$	see Fig. 7	3.0 to 3.6	3.0	-	-	ns
t_{su}	set-up time nJ and n̄ to CP	see Fig. 6	3.0 to 3.6	2.5	-	-	ns
t_{h}	hold time nJ and $\mathrm{n} \overline{\mathrm{K}}$ to nCP	see Fig. 6	3.0 to 3.6	2.0	-	-	ns
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency	see Fig. 6	3.0 to 3.6	150	-	-	MHz
$\mathrm{t}_{\text {sk(0) }}$	skew	note 3	3.0 to 3.6	-	-	1.5	ns

Notes

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. These typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.
3. Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.

Dual $\mathrm{J} \overline{\mathrm{K}}$ flip-flop with set and reset; positive-edge trigger

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$.
$\mathrm{V}_{\mathrm{M}}=0.5 \mathrm{~V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$.
V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.
The shaded areas indicate when the input is permitted to change for predictable output performance.
Fig. 6 Clock input ($n C P$) to output ($n Q$ and $n \bar{Q}$) propagation delays, the clock pulse width, the $n J$ and $n \bar{K}$ to $n C P$ set-up, the $n C P$ to $n J$ and $n \bar{K}$ hold times and the maximum clock pulse frequency.

Dual \sqrt{K} flip-flop with set and reset; positive-edge trigger

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 2.7 \mathrm{~V}$.
$\mathrm{V}_{\mathrm{M}}=0.5 \mathrm{~V}_{\mathrm{CC}}$ at $\mathrm{V}_{\mathrm{CC}}<2.7 \mathrm{~V}$.
V_{OL} and V_{OH} are typical output voltage drop that occur with the output load.
Fig. 7 Set ($n \overline{S D}$) and reset ($n \bar{R} D$) input to output ($n Q$ and $n \bar{Q}$) propagation delays, the set and reset pulse widths and the nRD and nSD to nCP removal time.

Dual \sqrt{K} flip-flop with set and reset; positive-edge trigger

$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{I}}$		$\mathbf{C}_{\mathbf{L}}$	$\mathbf{R}_{\mathbf{L}}$
			$\mathbf{V}_{\mathbf{E X T}}$	
1.2 V	$\mathrm{~V}_{\mathrm{CC}}$	50 pF	$500 \Omega^{(1)}$	open
2.7 V	2.7 V	50 pF	500Ω	open
3.0 to 3.6 V	2.7 V	50 pF	500Ω	open

Note

1. The circuit performs better when $R_{L}=1000 \Omega$.

Definitions for test circuit:

$\mathrm{R}_{\mathrm{L}}=$ Load resistor.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{T}=$ Termination resistance should be equal to Z_{0} of the pulse generator.
Fig. 8 Load circuitry for switching times.

Dual $\mathrm{J} \overline{\mathrm{K}}$ flip-flop with set and reset; positive-edge trigger

PACKAGE OUTLINES

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} \hline 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	8^{0}
inches	0.069	$\begin{array}{\|l\|} \hline 0.010 \\ 0.004 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.057 \\ 0.049 \\ \hline \end{array}$	0.01	$\begin{array}{\|l\|} \hline 0.019 \\ 0.014 \end{array}$	$\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{array}{\|l\|} \hline 0.244 \\ 0.228 \\ \hline \end{array}$	0.041	$\begin{aligned} & \hline 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	0°

Note

1. Plastic or metal protrusions of $0.15 \mathrm{~mm}(0.006 \mathrm{inch})$ maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT109-1	$076 E 07$	MS-012			-	

Dual $\mathrm{J} \overline{\mathrm{K}}$ flip-flop with set and reset; positive-edge trigger

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A_{1}	A_{2}	A_{3}	b_{p}	C	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	W	y	$Z^{(1)}$	θ
mm	2	$\begin{aligned} & 0.21 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 1.80 \\ & 1.65 \end{aligned}$	0.25	$\begin{aligned} & 0.38 \\ & 0.25 \end{aligned}$	$\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 5.2 \end{aligned}$	0.65	$\begin{aligned} & 7.9 \\ & 7.6 \end{aligned}$	1.25	$\begin{aligned} & 1.03 \\ & 0.63 \end{aligned}$	$\begin{aligned} & 0.9 \\ & 0.7 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 1.00 \\ & 0.55 \end{aligned}$	8° 0

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT338-1		MO-150		\bigcirc	$\begin{aligned} & -99-12-27 \\ & 03-02-19 \end{aligned}$

Dual \sqrt{K} flip-flop with set and reset; positive-edge trigger

UNIT	A $\max .$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.1	$\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$	$\begin{aligned} & 0.95 \\ & 0.80 \end{aligned}$	0.25	$\begin{aligned} & 0.30 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.3 \end{aligned}$	0.65	$\begin{aligned} & 6.6 \\ & 6.2 \end{aligned}$	1	$\begin{aligned} & 0.75 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$	0.2	0.13	0.1	$\begin{aligned} & 0.40 \\ & 0.06 \end{aligned}$	8° 0°

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT403-1		MO-153		\bigcirc	$\begin{aligned} & \hline-9-12-27 \\ & 03-02-18 \end{aligned}$

Dual $\mathrm{J} \overline{\mathrm{K}}$ flip-flop with set and reset; positive-edge trigger

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ${ }^{(1)}$	PRODUCT STATUS ${ }^{(2)(3)}$	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors - a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

